烟气再循环:烟气再循环时将一部分低温烟气直接送入燃烧区域, 或与一次风或二次风混合后送入燃烧区域,不仅降低燃烧温度,同时也降低了氧气浓度,进而降低了NOx的排放浓度。美国卡博特公司在炭黑尾气余热锅炉系统中采用了烟气再循环技术对尾排烟气进行了有效控制,当循环烟气量由占总给入气体量的0%、6%增大到39%时, 烟气NOx含量由522 mg/m3 降低为376 mg/m3 及246 mg/m3。显然,再循环烟气进入燃烧区域后需要吸收热量,重新升温至燃烧温度,过量的再循环烟气将导致较低的燃烧温度,必然引起不燃烧或燃烧不完全的现象,进一步将导致燃料无法稳定燃烧,通常烟气再循环率控制在30%以内,以确保燃气的稳定燃烧。
低NOx燃烧器:燃烧器的性能对低热值燃气燃烧设备的可靠性和经济性起着主要作用。从NOx的生成机理出发,通过特殊设计的燃烧器结构以及通过改变燃烧器的风煤比例,可以将前述的空气分级、燃料分级和烟气再循环降低NOx浓度的低氮燃烧技术用于燃烧器,以尽可能地降低着火氧的浓度、适当降低着火区的温度达到最大限度地抑制NOx生成的目的,这是目前低NOx燃烧器的主要设计理念。李阳扶等通过特殊的燃烧器结构设计,将燃料与空气分级分段给入、燃料与助燃空气以亚化学当量比率给入、抽取锅炉尾部烟气经混合装置与空气混合后进入烧嘴,将强化燃气与助燃空气的混合、分级分段燃烧、烟气循环等技术进行集成,大大降低了NOx的生成。低NOx燃烧器中还有一种比较常用的燃烧技术为低NOx旋流燃烧技术。旋流燃烧技术强化反应物混合与稳定燃烧方面研究者们已形成了共识,旋流燃烧能够形成燃烧产物的中心回流区,回流区内高温低速的燃烧产物和中间体对未反应的空气和燃料进行预热、稀释,能够有效地强化低热值合成气燃烧,在高速射流下形成稳定的火焰。与此同时,烟气循环使得炉内温度分布更加均匀,稀释燃烧反应物,降低最高燃烧温度、缩小高温区,降低氧含量,有可能抑制NOx的形成,但不同研究者对旋流燃烧降低氮氧化物排放的研究结果却存在较大差异。Coghe 等[22]分别采用了不同的燃烧器或旋流方式研究旋流数对NOx生产量的影响,结果表明随着旋流数的提高,NOx排放量可降低25%~30%。而Zhou 等的研究结果表明,随着旋流数的提高,NOx排放量先增高后减小,且仍高于无旋流时的排放量。